
Communication-Efficient Distributed Primal-Dual Algorithm
for Saddle Point Problems

Yaodong Yu∗
Nanyang Technological University

ydyu@ntu.edu.sg

Sulin Liu∗
Nanyang Technological University

liusl@ntu.edu.sg

Sinno Jialin Pan
Nanyang Technological University

sinnopan@ntu.edu.sg

Abstract

Primal-dual algorithms, which are proposed
to solve reformulated convex-concave saddle
point problems, have been proven to be effec-
tive for solving a generic class of convex opti-
mization problems, especially when the prob-
lems are ill-conditioned. However, the sad-
dle point problem still lacks a distributed op-
timization framework where primal-dual algo-
rithms can be employed. In this paper, we
propose a novel communication-efficient dis-
tributed optimization framework to solve the
convex-concave saddle point problem based
on primal-dual methods. We carefully de-
sign local subproblems and a central problem
such that our proposed distributed optimiza-
tion framework is communication-efficient.
We provide a convergence analysis of our
proposed algorithm, and extend it to ad-
dress non-smooth and non-strongly convex
loss functions. We conduct extensive experi-
ments on several real-world datasets to demon-
strate competitive performance of the proposed
method, especially on ill-conditioned prob-
lems.

1 INTRODUCTION

In the era of big data, developing distributed machine
learning algorithms has become increasingly important
yet challenging. In this work, we focus on developing
a new distributed optimization algorithm for regularized
empirical risk minimization (ERM), which is a generic
class of convex optimization problems that arises often
from machine learning. Specifically, our goal is to mini-

∗Indicates equal contributions.

mize the empirical loss defined over n data samples:

min
x∈Rd

P(x) =
1

n

n∑
i=1

φi(a
>
i x) + g(x), (1)

where a1, ..., an ∈ Rd are feature vectors of n data
points, φi : R→ R is a convex loss function with the lin-
ear predictor a>i x, for i = 1, ..., n, and g : Rd → R is a
convex regularization function for the predictor x ∈ Rd.
Suppose that a distributed system consists of K ma-
chines, and each machine has access only a subset Pk
of the data [n] := {1, ..., n}, where {Pk}Kk=1 is a given
partition of the dataset [n], and we denote by nk = |Pk|.

1.1 COMMUNICATION-EFFICIENT
DISTRIBUTED OPTIMIZATION

One of the most important issues in distributed optimiza-
tion is the communication efficiency because communi-
cation between machines is much more expensive than
reading data from the memory on local machines. There-
fore, more and more efforts have been made in propos-
ing communication-efficient methods in distributed op-
timization (Jaggi et al., 2014, Ma et al., 2015, Reddi
et al., 2016, Shamir et al., 2014, Smith et al., 2015, Yang,
2013). The basic idea behind these methods is to care-
fully design local computation and communication in a
distributed system. To achieve this goal, existing meth-
ods usually decompose the optimization problem into K
local subproblems, denoted by Lk, with respect to local
data of each machine. After each local machine performs
an arbitrary optimization method on Lk and solves it ap-
proximately, updated information from local machines
is sent to a central node to carry out a central update.
This allows one to control the trade-off between commu-
nication and local computation, which is more flexible in
distributed setting.

In general, existing communication-efficient methods
can be classified into two categories. A first category



is referred to as gradient-type, which aims to decom-
pose the problem (1) intoK local subproblems and solve
each subproblem using gradient descent methods, such
as stochastic variance reduced gradient (SVRG) (John-
son and Zhang, 2013), on each local machine indepen-
dently, and then update the optimization variables by do-
ing an average of local variables of each machine (Reddi
et al., 2016, Shamir et al., 2014).

The second one is referred to as coordinate-type, which
usually focuses on solving the dual problem of (1),

max
α∈Rn

D(α) =
1

n

n∑
i=1

−φ∗i (αi)−g∗(−
1

n

n∑
i=1

αiai), (2)

where φ∗i is the conjugate function of φi, α is the dual
variable vector with the i-th element being αi. This cat-
egory of methods decomposes the dual problem (2) into
K local subproblems with regard to each machine, and
employs a coordinate-type method, such as stochastic
dual coordinate ascent method (SDCA) (Shalev-Shwartz
and Zhang, 2013), to solve each local subproblem. After
each local subproblem is approximately solved, the cen-
tral node takes an average/add step according to the local
update from each machine (Jaggi et al., 2014, Ma et al.,
2015, Yang, 2013). Our proposed method falls into this
category.

There are two limitations of the coordinate-type ap-
proach. One limitation is that most existing coordinate-
type methods fail to match the communication complex-
ity lower bounds proved in (Arjevani and Shamir, 2015).
For example, when φi is (1/γ)-smooth, g is λ-strongly
convex, and R = maxi ‖ai‖2 in problem (1), then the
condition number is defined as

κ = R2/(λγ), (3)

and the lower bound of communication complex-
ity obtained in (Arjevani and Shamir, 2015) is
Õ (
√
κ log(1/ε)) in order to achieve an ε-suboptimal

solution (Nesterov, 2013). Since these coordinate-
type methods (Jaggi et al., 2014, Ma et al., 2015,
Yang, 2013) could be seen as a distributed version
of SDCA, and the iteration complexity of SDCA is
Õ (κ log(1/ε)), the communication complexity of these
methods (Jaggi et al., 2014, Ma et al., 2015, Yang,
2013) is Õ (κ log(1/ε)), which does not match the opti-
mal communication complexity. The problem could get
worse when problem (1) is ill-conditioned, i.e., κ � 1.
The other limitation is that it is not straight-forward to
extend existing coordinate-type approaches (Jaggi et al.,
2014, Ma et al., 2015, Yang, 2013) to deal with different
regularization forms of the regularization term g(·) other
than `2 regularization.

1.2 OUR APPROACH

To overcome the limitations mentioned above, we pro-
pose a novel communication-efficient distributed frame-
work with a primal-dual algorithm for saddle point prob-
lems (Chambolle and Pock, 2011, Zhang and Xiao,
2015b). The reasons that we focus on developing dis-
tributed framework for saddle point problems are three
folds:

1. It has been shown that saddle point algorithms are
able to obtain comparable and even more stable per-
formance than other state-of-the-art techniques for
convex optimization (Chambolle and Pock, 2011,
Yu et al., 2015, Zhang and Xiao, 2015b).

2. Primal-dual coordinate algorithms for saddle point
problems are able to reach the optimal iteration
complexity as proved by Zhang and Xiao (2015b).

3. Since primal-dual algorithms keep both primal and
dual variables in optimization, they are able to deal
with different kinds of regularization terms g(·),
such as `1-regularization, naturally.

Therefore, we aim to develop a distributed primal-dual
algorithm which can inherit the above three properties
in a distributed environment. To be specific, we first re-
formulate problem (1) as a convex-concave saddle point
problem through convex conjugation, which keeps both
primal and dual variables in optimization. We then de-
compose the saddle point problem into carefully de-
signed local subproblems, which can be solved indepen-
dently by each machine with respect to its local data. Af-
ter the local subproblems are solved approximately, the
updated local dual variables of each machine are sent to a
central node. Based on all the updates of local dual vari-
ables, we construct a central problem and get the cen-
tral update of the primal variables on the central node.
Finally, the central node sends the updated primal vari-
ables and aggregated dual variables to each local ma-
chine for next local optimization iteration. Details will
be described in Section 3.

As will be discussed in Section 4 and Section 5, by care-
fully designing the local subproblems and the central
problem, our algorithm is able to reach the communi-
cation complexity lower bounds, and deal with differ-
ent kinds of regularization terms. As the parameter λ
of the regularization function g(·) is usually on the order
of 1/

√
n or 1/n for many machine learning problems,

we are especially interested in solving problem (1) under
the distributed setting when it is ill-conditioned. With
an extremely large-scale dataset, the condition number
in (3) could be relatively large (κ � 1). We will



show through experiments in Section 6 that our pro-
posed algorithm can obtain better and more stable per-
formance on ill-conditioned problems compared to other
communication-efficient distributed optimization meth-
ods. Moreover, we provide a solution to extend our algo-
rithm to deal with non-smooth and non-strongly convex
optimization problems in Section 5.

1.3 OTHER RELATED WORK

Besides the communication-efficient distributed opti-
mization methods reviewed above, there exist other par-
allel and distributed optimization techniques. For ex-
ample, a well-known approach for solving problem (1)
is to perform a gradient descent method implemented
in a distributed system. Each local machine com-
putes its local gradient and sends it to the central node.
The central node aggregates the local gradient to take
a gradient step and updates x, and then broadcasts it
back to each local machine for the next iteration up-
dates. If the accelerated gradient descent method (Nes-
terov, 2013) is used, one can obtain the iteration com-
plexity Õ (

√
κ log(1/ε)). Another popular technique is

distributed alternating direction method of multipliers
(ADMM) (Boyd et al., 2011, Shi et al., 2014), whose
complexity is Õ (

√
κ log(1/ε)) under certain conditions.

Recently, Zhang and Xiao (2015a) proposed a distributed
algorithm based on the inexact damped Newton method,
which matches the communication complexity lower
bound Õ (

√
κ log(1/ε)). For more related distributed

and parallel optimization methods, we refer the readers
to (Arjevani and Shamir, 2015, Chang et al., 2014, Duchi
et al., 2013, Zhang et al., 2012) for a more comprehen-
sive literature of the related work.

2 PRELIMINARIES

In this section, we introduce first-order primal-dual al-
gorithms for convex-concave saddle point problems in a
single machine. To begin with, we reformulate the pri-
mal problem (1) as a convex-concave saddle point prob-
lem through convex conjugation, and the saddle point re-
formulation is widely applied in machine learning (Dai
et al., 2016, Zhang and Xiao, 2015b). Based on the def-
inition of convex conjugate, we replace each component
function φi(a>i x) by

φi(a
>
i x) = sup

yi∈R
{yi〈ai,x〉 − φ∗i (yi)} ,

where φ∗i (yi) = supα∈R {αyi − φi(α)} is the convex
conjugate of φi, then we arrive at a convex-concave sad-
dle point problem

min
x∈Rd

max
y∈Rn

f(x,y), (4)

where

f(x,y)
def
=

1

n

n∑
i=1

(yi〈ai,x〉 − φ∗i (yi)) + g(x),

where y ∈ Rn is referred to as a vector of dual variables
with its i-th element denoted by yi, and each yi is asso-
ciated with a data point ai. Under the assumption that
φi is (1/γ)-smooth, g is λ-strongly convex, and each φ∗i
is γ-strongly convex, the saddle point problem (4) has a
unique solution, which is denoted by (x?,y?).

Based on the reformulated problem (4), we could rewrite
the optimization problem as

min
x∈Rd

max
y∈Rn

f(x,y) =
1

n
〈Ay,x〉 − Φ∗(y) + g(x),

where A = [a1, ..., an] and Φ∗(y) = 1
n

∑n
i=1 φ

∗
i (yi).

This is the generic saddle point problem (Chambolle and
Pock, 2011). To solve this optimization problem, the ba-
sic idea is to alternatingly maximize f with repect to y,
and minimize f with respect to x, which is

y(t+1) = arg max
y∈Rn

1

n
〈Ay, x̄(t)〉 − Φ∗(y)− ‖y − y(t)‖22

2σn
,

x(t+1) = arg min
x∈Rd

1

n
〈Ay(t+1),x〉+ g(x) +

‖x− x(t)‖22
2τ

,

x̄(t+1) = x(t+1) + θ
(
x(t+1) − x(t)

)
,

where the parameters τ and σ control the quadratic reg-
ularization terms with respect to x and y, respectively,
which is similar to the use of step size in primal methods.
And x̄(t+1) is the extrapolation from x(t) and x(t+1) with
parameter θ ∈ [0, 1]. Here, θ

(
x(t+1) − x(t)

)
is similar

to the momentum term in Nesterov acceleration (Nes-
terov, 2013). There have been various primal-dual coor-
dinate algorithms designed based on the above scheme,
such as (Chambolle and Pock, 2011, Yu et al., 2015,
Zhang and Xiao, 2015b). Among them, Yu et al. (2015),
Zhang and Xiao (2015b) developed stochastic versions
of the primal-dual algorithm for the saddle point prob-
lem. Suppose φi is (1/γ)-smooth and g is λ-strongly
convex, most existing algorithms (Chambolle and Pock,
2011, Yu et al., 2015, Zhang and Xiao, 2015b) can
achieve linear convergence rate to obtain an ε-accurate
solution. The (expected) iteration complexity of these
methods is Õ (

√
κ log(1/ε)), which is desired on ill-

conditioned problems.

3 DISTRIBUTED SADDLE-POINT
FRAMEWORK

In this section, we present our proposed communication-
efficient Distributed Saddle Point Algorithm (DiSPA) in



detail. Assume that the dataset {ai}ni=1 is distributed
over K local machines, each machine k has access to
a subset Pk of the data with size of nk. Here we define
K local vectors of y by using the notation y[k] ∈ Rn for
k = 1, ...,K:

(y[k])i =

{
yi, if i ∈ Pk,
0, otherwise,

andK local data matrix ofA by using the notationA[k] ∈
Rd×n for k = 1, ...,K:

(A[k])i =

{
ai, if i ∈ Pk,
0, otherwise,

where (A[k])i denotes the i-th column of A[k], and 0 is a
d-dimensional vector of all zeros. According to the data
partition, we decompose the problem (4) into K local
subproblems, and define the associated central problem.
The core idea is to solve the defined local subproblems
on each local machine independently, and then centralize
the updated information of each machine to solve a easy
central problem.

3.1 LOCAL SUBPROBLEMS

We define a local subproblem of the original saddle point
problem (4) for machine k, which only requires access-
ing data that is available locally, i.e., Pk. Specifically,
each local subproblem of machine k at t-iteration is de-
fined as

min
x∈Rd

max
y[k]∈Rn

L(t)
k (x,y[k]), (5)

where

L(t)
k (x,y[k]) :=

1

n

∑
j∈Pk

(
yj〈aj ,x〉 − φ∗j (yj)

)
+ g(x)

+
1

n

∑
i/∈Pk

y
(t−1)
i 〈ai,x〉+ r

(t)
k (x,y[k]),

and

r
(t)
k (x,y[k]) =

‖x− x(t−1)‖22
2τ

−
K‖y[k] − y

(t−1)
[k] ‖22

2σn
.

Each local subproblem is related to the solution obtained
in the previous iteration

(
x(t−1),y(t−1)

)
, and we will

define the parameters τ , σ later. The first two terms can
be regarded as a local version of the original saddle point
problem (4). The third term 1

n

∑
i/∈Pk y

(t−1)
i 〈ai,x〉 =

1
n 〈
∑
l 6=k A[l]y

(t−1)
[l] ,x〉 in (5) can be interpreted as the

interaction with other local subproblems. And the
quadratic regularization term r

(t)
k (x,y[k]) is used to en-

force x and y[k] not to move too far away from solution
obtained at the previous iteration.

To solve the local subproblemL(t)
k (x,y[k]), we could ap-

ply primal-dual coordinate type of methods (Yu et al.,
2015, Zhang and Xiao, 2015b). The input needed
for solving the local subproblem would be x(t−1) and
Ay(t−1), as the term

∑
l 6=k A[l]y

(t−1)
[l] can be expressed

as
(
Ay(t−1) −A[k]y

(t−1)
[k]

)
and machine k has access to(

A[k], y
(t−1)
[k]

)
. By denoting our local optimization al-

gorithm used as ‘Local-DiSPA’, we could denote the pro-
cedure of solving the local subproblem as

(
x

(t)
k ,y

(t)
[k]

)
←

Local-DiSPA(x(t−1), Ay(t−1)). Note that in our frame-
work, each local subproblem is only required to be
solved approximately.

3.2 CENTRAL PROBLEM

Let
(
x

(t)
k ,y

(t)
[k]

)
denote the approximate solution ob-

tained by solving L(t)
k (x,y[k]) on machine k. Let y(t) =∑K

k=1 y
(t)
[k] , we define a central problem at t-iteration as

x(t) = arg min
x∈Rd

C(t)(x), (6)

where

C(t)(x) :=
1

n

n∑
i=1

y
(t)
i 〈ai,x〉+ g(x) +

‖x− x(t−1)‖22
2τ

.

The central update involves two steps. Firstly, updated
local A[k]y

(t)
[k] ∈ Rd are sent to the central node. After

that, we solve (6) on the central node, and then send the
updated x(t) ∈ Rd and Ay(t) ∈ Rd of the t-iteration
back to each local machine. The central update could be
viewed as minimizing the original saddle point problem
(4) over x with updated y(t). Also, we should observe
that the parameter τ defined in (5) and (6) is the same
parameter, which is one of the key points of our frame-
work.

3.3 OVERALL ALGORITHM DESCRIPTION

The overall algorithm of DiSPA is presented in Algo-
rithm 1. Firstly, we distribute the initial dual variable
y(0) to K local machines, and aggregate A[k]y

(0)
[k] from

all machines to computeAy(0) ←
∑K
k=1A[k]y

(0)
[k] . After

that, the initial primal variables x(0) and the transformed
dual variables Ay(0) are sent to each machine (Steps 2-
4). Secondly, each machine performs optimization on
its own local subproblem L(t)

k (x,y[k]), using a primal-
dual algorithm, such as SPDC (Zhang and Xiao, 2015b),
and sends its local update A[k]y

(t)
[k] ∈ Rd to the central



Algorithm 1 DiSPA(f , x(0), y(0), τ , σ, T )
1: Input: Data points {ai}ni=1 distributed across K

machines {Pk}Kk=1, parameters τ, σ ∈ R, initial pri-
mal variables x(0) ∈ Rd and initial dual variables
y(0) ∈ Rn.

2: Distribute y(0) to K machines as y
(0)
[k] for each.

3: Each machine compute A[k]y
(0)
[k] , and send it back to

the central node.
4: Perform Ay(0) ←

∑K
k=1A[k]y

(0)
[k] on the central

node, and send x(0) and Ay(0) to each machine
5: for t = 1, 2, ..., T do
6: for k ∈ [K] in parallel over all machines do
7:

(
x

(t)
k ,y

(t)
[k]

)
←Local-DiSPA(x(t−1), Ay(t−1))

8: Send A[k]y
(t)
[k] to the central node

9: end for
10: Ay(t) ←

∑K
k=1A[k]y

(t)
[k] (on the central node)

11: x(t) ← arg min
x∈Rd

C(t)(x) (on the central node)

12: Send x(t) and Ay(t) back to each machine
13: end for
14: Output: (x(T ),y(T ))

node. The goal of this internal procedure is to approxi-
mately solve each local subproblem. We refer this pro-
cedure as the inner loop, which is stated in Steps 6-9 of
Algorithm 1. Thirdly, with the local updates A[k]y

(t)
[k]’s,

the central node aggregates them to compute Ay(t), and
solves the defined central problem C(t)(x) to get the up-
date of x(t) (Steps 10-11 of Algorithm 1). Finally, the
central node sends (x(t) and Ay(t)) back to each ma-
chine in order to start the next round of local optimiza-
tion (Step 12), we refer Steps 5-13 as the outer loop of
our algorithm.

Note that, on one hand, the essential information that the
central problem requires can be represented by the vec-
tors

{
A[k]y

(t)
[k]

}
’s of each local machine, which are of

dimension of d. On the other hand, each local machine
only requires

(
x(t), Ay(t)

)
, which is of 2d dimensions,

from the central node.

4 CONVERGENCE ANALYSIS

Before we present our main convergence results, we
make some assumptions on the objective functions and
the local suboptimality on each local subproblem.

Assumption 1. Each φi(·) is convex and differentiable,
and φi(·) is (1/γ)-smooth, i.e.,

|φ′i(a)− φ′i(b)| ≤ (1/γ)|a− b|, ∀a, b ∈ R.

Assumption 2. g(·) is λ-strongly convex i.e. for ∀x, y ∈
Rd and g′(y) ∈ ∂g(y),

g(x) ≥ g(y) + g′(y)(x− y) +
λ

2
‖x− y‖22.

Assumption 3. There exists constants Ωx,Ωy > 0 such
that

max
t
‖x(t) − x?‖2 ≤ Ωx,

max
t
‖y(t) − y?‖2 ≤ Ωy,

where (x(t),y(t)) is t-iteration update of Algorithm 1,
and (x?,y?) is the optimal solution of (4).

Assumption 4. Each local machine k produces an ap-
proximate solution

(
x

(t)
k ,y

(t)
[k]

)
that satisfies

E
[∥∥∥y(t)

[k] − ŷ
(t)
[k]

∥∥∥
2

]
≤ Θ̂

∥∥∥y(t−1)
[k] − ŷ

(t)
[k]

∥∥∥
2
,

and

E[(f(x̂
(t)
k , ŷ

(t)
[k])− f(x̂

(t)
k ,y

(t)
[k]))]

≤ Θ̃
(
f(x̂

(t)
k , ŷ

(t)
[k])− f(x̂

(t)
k ,y

(t−1)
[k] )

)
,

where Θ̂, Θ̃ < 1, and
(
x̂

(t)
k , ŷ

(t)
[k]

)
is the optimal solution

of local subproblem L(t)
k

(
x,y[k]

)
.

Assumption 5. There exist constants c′, c′′ > 0, and the
approximate solution y(t) =

∑K
k=1 y

(t)
[k] satisfies

E[N] ≤ Θ(f(x(t−1),y?)− f(x?,y(t−1))),

and N is defined as

N =

K∑
k=1

(f(x̂
(t)
k , ŷ

(t)
[k])−f(x̂

(t)
k ,y

(t)
[k]))+

M

n
‖y(t)−ŷ(t)‖2,

whereM = c′Ωx+c′′Ωy, and Θ ∈ (0, 1) is a pre-defined
constant.

Note that Assumptions 4 and 5 imply that the local sub-
problems need to be solved approximately to some ex-
tent. As the local subproblems are saddle point prob-
lems, we can apply different kinds of algorithms for sad-
dle point problems to solve them, such as (Chambolle
and Pock, 2011, Yu et al., 2015, Zhang and Xiao, 2015b),
which include both stochastic and non-stochastic opti-
mization methods.

To analyse the convergence behavior of our distributed
algorithm, we need to characterize the connection be-
tween local subproblems and central update on the cen-
tral node. Based on the relationship between the central
update x(t) and the local optimal solution

(
x̂

(t)
k , ŷ

(t)
[k]

)
,

we can get the convergence guarantee of Algorithm 1.
All proofs can be found in Appendix.



Lemma 1. Suppose that Assumptions 1-5 hold. Let
(x?,y?) be the unique saddle point of f(x,y) defined
in (4), and define

∆(t) =f(x(t),y?)− f(x?,y(t)) +
1 + τλ

2τ
‖x(t) − x?‖22

+
2K2 + 2Kσγ − 1

4σnK
‖y(t) − y?‖22.

If the parameters τ and σ are chosen such that τσ =
1

4R2 and σ > 1
2Kγ , then for t ≥ 1, the proposed DiSPA

(Algorithm 1) achieves

E[∆(t)] ≤ ΘE[∆(t−1)], (7)

where Θ = max{ 1
1+(σγK −

1
2K2 )

, 1
1+τλ}.

Theorem 1. Suppose that Assumptions 1-5 hold, and the
parameters τ = γ/(4R2), σ = 1/γ and K ≤ κ. In
order for Algorithm 1 to obtain

E[‖x(T ) − x?‖22] ≤ ε,

it suffices to have the number of communication itera-
tions T satisfy

T ≥
(

1 +
4R2

λγ

)
log

(
C

ε

)
,

where C = ∆(0)

λ
2

(
1+ 4R2

λγ

) .

Based on Lemma 1 and Theorem 1, we can get the
communication complexity of Algorithm 1. By taking
τ = γ

4R2 and σ = 1
γ , the communication complexity of

Algorithm 1 is Õ (κ log(1/ε)). This does not match the
optimal communication complexity. In the next section,
we derive an accelerated version of DiSPA that attains
the optimal communication complexity.

5 EXTENSION OF DISPA

In this section, we derive two extensions of DiSPA. The
first extension applies a generic acceleration scheme pro-
posed by Lin et al. (2015) to obtain an accelerated ver-
sion of DiSPA. The second one extends our algorithm to
handle non-smooth and non-strongly convex loss func-
tions with convergence guarantee.

5.1 ACCELERATION

The communication complexity of our algorithm derived
in Theorem 1 is Õ (κ log(1/ε)) in order to achieve an
ε-suboptimal solution, which does not match the lower
bound proved in (Arjevani and Shamir, 2015). Based on
the ‘Catalyst’ acceleration scheme proposed by Lin et al.
(2015), we develop the accelerated DiSPA to achieve

the optimal communication complexity. ‘Catalyst’ is a
generic scheme for accelerating first-order optimization
methods, similar to classical gradient descent schemes
of Nesterov acceleration. It is a natural choice for dis-
tributed optimization algorithms that solve local sub-
problem approximately in each communication iteration.
Based on Catalyst acceleration, we modify the original
objective function by adding a quadratic term

f (t)(x,y) = f(x,y) +
ϑ

2
‖x− z(t−1)‖22,

where ϑ > 0 is a parameter defined in Catalyst, z(t)

is obtained by an extrapolation step similar to the ac-
celeration scheme in (Nesterov, 2013). With a care-
fully selected parameter ϑ, we can develop an acceler-
ated version of DiSPA described in Algorithm 2, which
achieves the optimal communication complexity. We re-
fer to the accelerated distributed saddle point algorithm
as A-DiSPA.

Theorem 2. Suppose Assumption 1-5 hold and assume
ϑ = 4R2

γ − λ > 0, if the parameters in Catalyst are cho-

sen as Ts = Õ(1), q = λ/(λ + ϑ), α0 =
√
q. The total

communication iterations of Algorithm 2 for achieving
P(x(T ))− P(x?) < ε is Õ

(√
κlog

(
1
ε

))
.

The ‘Catalyst’ acceleration scheme is applied widely
to accelerate different kinds of optimization meth-
ods (Reddi et al., 2016). As the ‘acceleration’ quadratic
term is related to the primal variable x and the saddle
point problem keeps the primal variable, it is convenient
to apply this acceleration scheme to DiSPA and achieve
the optimal communication complexity.

5.2 NON-SMOOTH OR/AND NON-STRONGLY
CONVEX FUNCTIONS

The communication complexity bounds in Theorem 1
and Theorem 2 are developed under the Assumptions 1
and 2, which means that the derivative of φi(·) needs
to be (1/γ)-Lipschitz continuous and g(·) needs to be
λ-strongly convex. For general loss functions in ma-
chine learning, both assumptions may fail, for exam-
ple, when φi(·) is hinge loss and g(·) is `1-regularization
term. Therefore, we aim to develop an extension of Al-
gorithm 2 to deal with non-smooth and non-strongly con-
vex loss functions.

To be concise, we only consider the case when φi(·) is
non-smooth and g(·) is non-strongly convex. The key
idea here is to apply a perturbation term to analyze the
non-smooth and non-strongly convex setting, which is
commonly used in many optimization methods (Reddi
et al., 2016, Zhang and Xiao, 2015b). Here we assume
that neither φi(·) is smooth nor g(·) is strongly convex.



Algorithm 2 A-DiSPA
1: Input: Data points {ai}ni=1 distributed across K

machines {Pk}Kk=1, parameters τ, σ, ϑ, α0 ∈ R,
initial primal variable x(0) generated on the cen-
tral node, initial local dual variables y(0) generated
on local machines, optimization algorithm DiSPA,
number of inner iterations Ts of DiSPA.

2: Initialization: q = λ/(λ+ ϑ), z(0) = x(0), t = 1
3: while stopping criterion is not satisfied do
4: (x(t),y(t)) = DiSPA(f (t),x(t−1),y(t−1), τ, σ, Ts)

5: Compute αt ∈ (0, 1) from equation

α2
t = (1− αt)α2

t−1 + qαt

6: Compute z(t) = x(t) + βt(x
(t) − x(t−1)), where

βt = αt−1(1−αt−1)
α2
k−1+αt

7: t = t+ 1
8: end while
9: Output x(t)

In particular, we consider the following modified saddle
point function

fε(x,y)
def
=

1

n

n∑
i=1

(
yi〈ai,x〉 −

(
φ∗i (yi) +

ε

2
y2
i

))
+
(
g(x) +

ε

2
‖x‖22

)
,

(8)

where ε > 0 is a pre-defined scalar. fε(x,y) can be
regarded as an approximation of the original saddle point
problem f(x,y). We then obtain that both φ∗i (yi) + ε

2y
2
i

and g(x)+ ε
2‖x‖

2
2 are ε-strongly convex. In the following

corollary, we show that the perturbed function fε(x,y) is
a good approximation of the origin function f(x,y).

Corollary 1. Assume that φi is convex and Lφ-Lipschitz
continuous, and g is convex. Let (x?,y?) be the unique
saddle point of f(x,y), and (x?ε ,y

?
ε ) be the unique sad-

dle point of fε(x,y). Then we have

P(x?ε )− P(x?) ≤ ε

2

(
‖x?‖22 + L2

φ

)
.

As a result, we could apply Algorithm 2 to the per-
turbed function fε(x,y). By applying Theorem 2 and
the relationship between fε(x,y) and f(x,y), we ob-
tain that the communication complexity of Algorithm 2
for non-smooth and non-strongly convex functions is
Õ
(
(1/ε) log

(
1
ε2

))
, and the proof is similar to the one

in (Zhang and Xiao, 2015b).

6 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments of
DiSPA and A-DiSPA on several real-world distributed
datasets. We compare the performance of our algorithms
with the state-of-the-art distributed optimization algo-
rithm CoCoA+ (Ma et al., 2015).

For our experiments, we solve the standard binary clas-
sification task with datasets obtained from LIBSVM
datasets (Chang and Lin, 2011). The statistics of the
datasets are summarized in Table 1. Our goal is to mini-
mize the regularized empirical risk with smoothed hinge
loss:

min
x∈Rd

P(x) =
1

n

n∑
i=1

φi(a
>
i x) +

λ

2
‖x‖22.

For each task, the data point takes the form of (ai, bi),
where ai is a feature vector, bi ∈ {1,−1} is the cor-
responding class label and associated with loss function
φi. The smoothed hinge loss function (Shalev-Shwartz
and Zhang, 2013) φi is defined as

φi(z) =


0 if biz ≥ 1,

1− biz − γ
2 if biz ≤ 1− γ,

1
2γ (1− biz)2 otherwise,

where φi is (1/γ)-smooth. We set γ = 1 in our ex-
periments. The conjugate function of φi is φ∗i (β) =
biβ + γ

2β
2 for biβ ∈ [−1, 0] and +∞ otherwise.

Table 1: Three Datasets for Numerical Experiments

DATASET # SAMPLES n # FEATURES d
RCV1 677,399 47,236

Realsim 72,309 20,958
Covtype 581,012 54

6.1 IMPLEMENTATION DETAILS

We implement DiSPA, A-DiSPA and CoCoA+ in
Petuum (Xing et al., 2015). For DiSPA and A-DiSPA, we
use SPDC (Zhang and Xiao, 2015b) as the local solver,
and use SDCA (Shalev-Shwartz and Zhang, 2013) as
the local solver for CoCoA+. When doing comparison
among different algorithms, we run the same number
of local iterations on local machines (i.e., iterations of
SDCA or SPDC) before communication with the central
node. We compare different algorithms based on com-
munication iterations. From our results, we find that
DiSPA converges faster when parameters τ and σ are
large, which is similar to the findings reported in (John-
son and Zhang, 2013, Zhang and Xiao, 2015a). We adopt
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Figure 1: Comparison of DiSPA, A-DiSPA and CoCoA+ on three datasets: RCV1, Realsim, Covtype. The horizontal
axis is the number of communications, and the vertical axis is the optimality gap (P (x(T )) − P (x?)). Each plot
contains a comparison of CoCoA+ (blue, circle), DiSPA (red, asterisk) and A-DiSPA (yellow, diamond). All the plots
are shown on log-y scale . The number of local iterations performed in each communication iteration is 5,000 for
Realsim, and 10,000 iterations for RCV1 and Covtype.

tuned parameters τ and σ from a predefined range. For
CoCoA+, we present the results of the selected optimal
parameter σ′.

6.2 COMPARISON BETWEEN DISPA AND
COCOA+

We compare DiSPA and CoCoA+ on three datasets:
RCV1, Realsim, Covtype, across different values of the
regularization parameter λ. To be specific, the regular-
ization parameter λ is set to be λ ∈

{
10−6, 10−7, 10−8

}

on the three datasets. Both DiSPA and CoCoA+ are im-
plemented on 16 machines (K = 16). For both DiSPA
and CoCoA+, the numbers of local iterations performed
in each communication iteration are the same.

In Figure 1, the results show that the performance of
DiSPA is comparable with CoCoA+. We can see that
when λ = 10−6, DiSPA has comparable convergence
performance with regard to CoCoA+. On all the three
datasets, when λ ∈

{
10−7, 10−8

}
, DiSPA converges

to the optimal solution faster and more stable than Co-
CoA+. We also notice that the performance of Co-
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Figure 2: The performance of DiSPA with increasing number of machines,K ∈ {4, 8, 16, 32, 64}. The local iterations
performed in each communication iteration is 1,000 for Realsim, and 5,000 iterations for RCV1.

CoA+ on Covtype is not stable compared to that on the
other two datasets, especially when λ is very small, i.e.,
λ = 10−7 or λ = 10−8, which is consistent with the ex-
perimental results of CoCoA+ on Covtype in Reddi et al.
(2016). In Section 6.3, we will show the superior perfor-
mance of A-DiSPA on ill-conditioned problems.

6.3 COMPARISON OF DISPA AND A-DISPA

In Figure 1, we also compare A-DiSPA and DiSPA to
show the acceleration obtained by applying Catalyst ac-
celeration. We compare DiSPA and A-DiSPA on three
datasets (RCV1, Realsim, Covtype) across different reg-
ularization parameter under the same settings as men-
tioned in Section 6.2. The results show that when prob-
lem is ill-conditioned, i.e. κ = R2/ (λγ) � 1, A-
DiSPA converges substantially faster than DiSPA. This
confirms our theoretical analysis, as the communication
complexity of A-DiSPA is Õ

(√
κlog

(
1
ε

))
and DiSPA is

Õ
(
κlog

(
1
ε

))
.

6.4 SCALABILITY

Since scalability is an important metric of distributed op-
timization algorithms, in Figure 2, we study the scala-
bility of DiSPA by observing the numerical performance
with increasing number of machines. We conduct exper-
iments on two datasets (RCV1, Realsim), and the ma-
chine number is set to be K ∈ {4, 8, 16, 32, 64}. For
comparison, we keep the iterations and parameters τ, σ
the same for each dataset. The experiments show that
DiSPA can scale effectively with number of machines,
which confirms our theory in Section 4. We observe that
performance slightly drops on RCV1 with 64 machines,

this is possibly because that local subproblems are solved
with higher accuracy which may affect the effectiveness
of aggregation in the central update.

7 CONCLUSION

In this work, we present a novel distributed optimization
framework for solving the saddle point problem, which
can be applied to solving a generic class of convex opti-
mization problems. We provide the theoretical guarantee
of our algorithms, and show that the accelerated algo-
rithm can achieve the optimal communication complex-
ity. We also extend our algorithm for solving non-smooth
and non-strongly convex loss functions. The experimen-
tal results demonstrate that our algorithms obtain better
performance compared to the state-of-the-art distributed
optimization method.
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Appendix

A Lemmas for Convergence Analysis of DiSPA

We first introduce the lemma that characterizes the optimality condition of local subproblem L(t)
k (x,y[k]).

Lemma 2. Assume that each φi(·) is (1/γ)-smooth and g(·) is λ-strongly convex, R = max{‖a1‖2, ...‖an‖2}. Let
(x̂

(t)
k , ŷ

(t)
[k]) be the optimal solution of L(t)

k (x,y[k]), k = 1, 2, ...,K. Based on the strongly convexity, we have

L(t)
k (x, ŷ

(t)
[k]) ≥ L

(t)
k (x̂

(t)
k , ŷ

(t)
[k]) +

(
1

2τ
+
λ

2

)
‖x− x̂

(t)
k ‖

2, ∀x ∈ Rd

L(t)
k (x̂

(t)
k ,y[k]) ≤ L

(t)
k (x̂

(t)
k , ŷ

(t)
[k])−

(
K

2σn
+

γ

2n

)
‖y[k] − ŷ

(t)
[k]‖

2, ∀y[k] ∈ Rn

Proof. Based on the definition of the saddle point, we can notice that−L(t)
k (x̂(t),y[k]) is a

(
K
σn + γ

n

)
-strongly convex

function and minimized by ŷ
(t)
[k] , which implies

−L(t)
k (x̂(t),y[k]) ≥ −L

(t)
k (x̂(t), ŷ

(t)
[k]) +

(
K

2σn
+

γ

2n

)
‖y[k] − ŷ

(t)
[k]‖

2, ∀y[k] ∈ Rn

Also notice that L(t)
k (x, ŷ

(t)
[k]) is a

(
1
τ + λ

)
-strongly convex function minimized by x̂

(t)
k , which implies

L(t)
k (x, ŷ

(t)
[k]) ≥ L

(t)
k (x̂

(t)
k , ŷ

(t)
[k]) +

(
1

2τ
+
λ

2

)
‖x− x̂

(t)
k ‖

2, ∀x ∈ Rd

Based on the optimality condition of L(t)
k (x,y[k]) and the central update x(t) on central worker, we can get the

connection between local subproblems and central update on central worker.

Lemma 3 (Relationship between local optimal solution and central update). Assume that each φi(·) is (1/γ)-smooth
and g(·) is λ-strongly convex, R = max{‖a1‖2, ...‖an‖2}. Let (x̂

(t)
k , ŷ

(t)
[k]) be the optimal solution of L(t)

k (x,y[k]),

k = 1, 2, ...,K. Let x(t) = arg min
x∈Rd

C(t)(x), it holds that

(K − 1)2

4σnK
‖y(t−1) − y(t)‖22 + Λ′ ≥

(
3

4τ
+ λ

) K∑
k=1

‖x(t) − x̂
(t)
k ‖

2
2 (9)

where Λ′ = 1
n

∑K
k=1(ŷ

(t)
[k] − y

(t)
[k])
>A>(x(t) − x̂

(t)
k ) and 1/τ = 4σR2.

Proof. Based on lemma 2, we could get that for k = 1, 2, ...,K,

1

n

∑
j∈Pk

ŷ
(t)
j 〈aj ,x

(t) − x̂
(t)
k 〉+

1

n

∑
i/∈Pk

y
(t−1)
i 〈ai,x(t) − x̂

(t)
k 〉+ g(x(t))− g(x̂

(t)
k ) +

‖x(t) − x(t−1)‖22
2τ

≥

‖x̂(t)
k − x(t−1)‖22

2τ
+

(
1

2τ
+
λ

2

)
‖x(t) − x̂

(t)
k ‖

2
2

Since x(t) minimizes the function C(t)(x), which means that for k = 1, 2, ...,K, we have

1

n

n∑
i=1

y
(t)
i 〈ai, x̂

(t)
k −x(t)〉+ g(x̂

(t)
k )− g(x(t)) +

‖x̂(t)
k − x(t−1)‖22

2τ
≥ ‖x

(t) − x(t−1)‖22
2τ

+

(
1

2τ
+
λ

2

)
‖x(t)− x̂

(t)
k ‖

2
2



Sum up the above two inequalities, we can get

1

n

∑
j∈Pk

ŷ
(t)
j 〈aj ,x

(t) − x̂
(t)
k 〉+

1

n

∑
i/∈Pk

y
(t−1)
i 〈ai,x(t) − x̂

(t)
k 〉+

1

n

n∑
i=1

y
(t)
i 〈ai, x̂

(t)
k − x(t)〉 ≥

(
1

τ
+ λ

)
‖x(t) − x̂

(t)
k ‖

2
2

1

n

∑
j∈Pk

(
ŷ

(t)
j − y

(t)
j

)
〈aj ,x(t) − x̂

(t)
k 〉+

1

n

∑
i/∈Pk

(
y

(t−1)
i − y(t)

i

)
〈ai,x(t) − x̂

(t)
k 〉 ≥

(
1

τ
+ λ

)
‖x(t) − x̂

(t)
k ‖

2
2

1

n
(ŷ

(t)
[k] − y

(t)
[k])
>A>(x(t) − x̂

(t)
k ) +

1

n

∑
l 6=k

(y
(t−1)
[l] − y

(t)
[l] )>A>(x(t) − x̂

(t)
k ) ≥

(
1

τ
+ λ

)
‖x(t) − x̂

(t)
k ‖

2
2

We need to upper bound the second term on the left-hand-side of the above inequality. Since ‖ai‖2 ≤ R, and we
assume that 1/τ = 4σR2, then∣∣∣∣∣∣ 1n

∑
l 6=k

(y
(t−1)
[l] − y

(t)
[l] )>A>(x(t) − x̂

(t)
k )

∣∣∣∣∣∣ ≤ ‖x
(t) − x̂

(t)
k ‖22

4τ
+
‖
∑
l 6=k A(y

(t−1)
[l] − y

(t)
[l] )‖22

n2/τ

≤
‖x(t) − x̂

(t)
k ‖22

4τ
+

(
∑
i/∈Pk |y

(t−1)
i − y(t)

i | · ‖ai‖)2

4σR2n2

≤
‖x(t) − x̂

(t)
k ‖22

4τ
+

(K − 1)

4σnK

∑
l 6=k

‖y(t−1)
[l] − y

(t)
[l] ‖

2
2

Combine the above two inequalities,

(K − 1)

4σnK

∑
l 6=k

‖y(t−1)
[l] − y

(t)
[l] ‖

2
2 +

1

n
(ŷ

(t)
[k] − y

(t)
[k])
>A>(x(t) − x̂

(t)
k ) ≥

(
3

4τ
+ λ

)
‖x(t) − x̂

(t)
k ‖

2
2

Sum up the above inequality over k = 1, 2, ...,K, and denote Λ′ = 1
n

∑K
k=1(ŷ

(t)
[k] −y

(t)
[k])
>A>(x(t)− x̂

(t)
k ), we have

(K − 1)2

4σnK
‖y(t−1) − y(t)‖22 + Λ′ ≥

(
3

4τ
+ λ

) K∑
k=1

‖x(t) − x̂
(t)
k ‖

2
2

Lemma 3 shows that the distance between x(t) and x̂
(t)
k can be control by the update of y(t) in each iteration.

B Proofs of Convergence for DiSPA and A-DiSPA

B.1 Proof of Lemma 1

Proof. We start from characterizing the relationship between x(t) and x? after the t-update in Algorithm 1. According
to the definition of x(t), we have C(t)(x?) ≥ C(t)(x(t)) +

(
1
2τ + λ

2

)
‖x(t) − x?‖22, i.e.,

1

n

n∑
i=1

y
(t)
i 〈ai,x

?−x(t)〉+g(x?)−g(x(t))+
‖x? − x(t−1)‖22

2τ
≥ ‖x

(t) − x(t−1)‖22
2τ

+

(
1

2τ
+
λ

2

)
‖x(t)− x̂?‖22 (10)

We also could derive the inequality characterizing the relation between ŷ(t) =
∑K
k=1 ŷ

(t)
[k] and y?. For k = 1, 2, ...,K,

we have
ŷ

(t)
[k] = arg max

y[k]∈Rn
L(t)
k (x̂

(t)
k ,y[k])

Since φi(·)is(1/γ)-smooth, we have φ∗i (·) is γ-strongly convex, therefore, for k = 1, 2, ...,K , ∀j ∈ Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂(t)

k 〉+
(
φ∗j (y

?
j )− φ∗j (ŷ

(t)
j )
)

+
K(y?j − y

(t−1)
j )2

2σ
≥
K(ŷ

(t)
j − y

(t−1)
j )2

2σ
+

(
K

2σ
+
γ

2

)
(ŷ

(t)
j − y

?
j )2



Sum up the above inequality over j, we have

∑
j∈Pk

(ŷ
(t)
j −y

?
j )〈aj , x̂(t)

k 〉+
∑
j∈Pk

(
φ∗j (y

?
j )− φ∗j (ŷ

(t)
j )
)

+
K‖y?[k] − y

(t−1)
[k] ‖22

2σ
≥
K‖ŷ(t)

[k] − y
(t−1)
[k] ‖22

2σ
+

(
K

2σ
+
γ

2

)
‖y?[k]−ŷ

(t)
[k]‖

2
2

Sum up the above inequality over k = 1, 2, ...,K and multiplying both sides by 1/n,

1

n

K∑
k=1

∑
j∈Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂(t)

k 〉+
1

n

n∑
i=1

(
φ∗i (y

?
j )− φ∗i (ŷ

(t)
j )
)

+
K‖y? − y(t−1)‖22

2σn

≥ K‖ŷ(t) − y(t−1)‖22
2σn

+

(
K

2σn
+

γ

2n

)
‖y? − ŷ(t)‖22

(11)

In addition, we consider a combination of the saddle-point function values at different points, we have

(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
=

(
1

n

n∑
i=1

y?i 〈ai,x(t)〉 − 1

n

n∑
i=1

φ∗i (y
?
i ) + g(x(t))

)
−

(
1

n

n∑
i=1

y
(t)
i 〈ai,x

?〉 − 1

n

n∑
i=1

φ∗i (y
(t)
i ) + g(x?)

)

=
(
g(x(t))− g(x?)

)
+

1

n

n∑
i=1

(
φ∗i (y

(t)
i )− φ∗i (y?i )

)
+

(
1

n

n∑
i=1

y?i 〈ai,x(t)〉 − 1

n

n∑
i=1

y
(t)
i 〈ai,x

?〉

)

Then we add (10) and (11) to the above equality, which implies

1

n

K∑
k=1

∑
j∈Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂k〉+

1

n

n∑
i=1

y
(t)
i 〈ai,x

? − x(t)〉+
1

n

n∑
i=1

y?i 〈ai,x(t)〉 − 1

n

n∑
i=1

y
(t)
i 〈ai,x

?〉

+
1

n

n∑
i=1

(
φ∗i (y

(t)
i )− φ∗i (ŷ

(t)
i )
)

+
‖x? − x(t−1)‖22

2τ
+
K‖y? − y(t−1)‖22

2σn

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+
‖x(t) − x(t−1)‖22

2τ
+
K‖ŷ(t) − y(t−1)‖22

2σn
+

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n

)
‖y? − ŷ(t)‖22

which implies that

1

n

K∑
k=1

∑
j∈Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂k − x(t)〉+

1

n

n∑
i=1

(ŷ
(t)
i − y

(t)
i )〈ai,x(t)〉+

1

n

n∑
i=1

(
φ∗i (y

(t)
i )− φ∗i (ŷi)

)
+
‖x? − x(t−1)‖22

2τ
‖2 +

K‖y? − y(t−1)‖22
2σn

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+
‖x(t) − x(t−1)‖22

2τ
+
K‖ŷ(t) − y(t−1)‖22

2σn

+

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n

)
‖y? − ŷ(t)‖22



We need to upper bound the first term on the left-hand-side of the above inequality, assume that 1/τ = 4σR2, we have

| 1
n

∑
j∈Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂(t)

k − x(t)〉| = | 1
n

(ŷ
(t)
[k] − y?[k])

>A>(x̂
(t)
k − x(t))|

≤
‖x̂(t)

k − x(t)‖22
4τ

+
‖A(ŷ

(t)
[k] − y?[k])‖

2
2

n2/τ

≤
‖x̂(t)

k − x(t)‖22
4τ

+
(
∑
j∈Pk |ŷ

(t)
j − y?j | · ‖aj‖)2

4σR2n2

≤
‖x̂(t)

k − x(t)‖22
4τ

+
‖ŷ(t)

[k] − y?[k]‖
2
2

4σnK

then we can get the upper bound

1

n

K∑
k=1

∑
j∈Pk

(ŷ
(t)
j − y

?
j )〈aj , x̂k − x(t)〉 ≤

K∑
k=1

‖x̂(t)
k − x(t)‖22

4τ
+
‖ŷ(t) − y?‖22

4σnK

next we denote that

Λ′′ =
1

n

n∑
i=1

(ŷ
(t)
i − y

(t)
i )〈ai,x(t)〉+

1

n

n∑
i=1

(
φ∗i (y

(t)
i )− φ∗i (ŷi)

)
Combining the above inequality and equation, we derive that

K∑
k=1

‖x̂(t)
k − x(t)‖22

4τ
+
‖x? − x(t−1)‖22

2τ
+
K‖y? − y(t−1)‖22

2σn
+ Λ′′

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+
‖x(t) − x(t−1)‖22

2τ
+
K‖ŷ(t) − y(t−1)‖22

2σn

+

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n
− 1

4σnK

)
‖y? − ŷ(t)‖22

Based on the inequality (9) in lemma 3, we could get that

K∑
k=1

‖x̂(t)
k − x(t)‖22

4τ
+

(K − 1)2

4σnK
‖y(t−1) − y(t)‖22 +

‖x? − x(t−1)‖22
2τ

+
K‖y? − y(t−1)‖22

2σn
+ Λ′ + Λ′′

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+
‖x(t) − x(t−1)‖22

2τ
+
K‖ŷ(t) − y(t−1)‖22

2σn

+

(
3

4τ
+ λ

) K∑
k=1

‖x(t) − x̂
(t)
k ‖

2
2 +

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n
− 1

4σnK

)
‖y? − ŷ(t)‖22

Since we can rewrite ‖y − ŷ(t)‖22 = ‖y − y(t)‖22 + ‖y(t) − ŷ(t)‖22 + 2(y − y(t))>(y(t) − ŷ(t)), then we denote that

Λ′′′ =−
(
K

2σn
+

γ

2n
− 1

4σnK

)(
‖y(t) − ŷ(t)‖22 + 2(y? − y(t))>(y(t) − ŷ(t))

)
− K

2σn

(
‖y(t) − ŷ(t)‖22 + 2(y(t−1) − y(t))>(y(t) − ŷ(t))

)
Based on the definition of Λ′′′, we derive that

‖x? − x(t−1)‖22
2τ

+
K‖y? − y(t−1)‖22

2σn
+ Λ′ + Λ′′ + Λ′′′

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n
− 1

4σnK

)
‖y? − y(t)‖22 + Λ]



where we define

Λ] =
‖x(t) − x(t−1)‖22

2τ
+

(
1

2τ
+ λ

) K∑
k=1

‖x(t) − x̂
(t)
k ‖

2
2 +

(
K

2σn
− (K − 1)2

4σnK

)
‖y(t) − y(t−1)‖22

Assume that Θ ≥ 0, then we can obtain

Θ
(
f(x(t−1),y?)− f(x?,y?)

)
+ Θ

(
f(x?,y?)− f(x?,y(t−1))

)
‖x? − x(t−1)‖22

2τ
+
K‖y? − y(t−1)‖22

2σn
+ Λ

≥
(
f(x(t),y?)− f(x?,y?)

)
+
(
f(x?,y?)− f(x?,y(t))

)
+ Θ

(
f(x(t−1),y?)− f(x?,y(t−1))

)
+

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
K

2σn
+

γ

2n
− 1

4σnK

)
‖y? − y(t)‖22 + Λ]

where Λ = Λ′ + Λ′′ + Λ′′′ and Λ] > 0.

In order to get the convergence guarantee of our algorithm, we need to get the upper bound of Λ, based on the definition
of Λ, we could get

Λ ≤ 1

n

K∑
k=1

(ŷ
(t)
[k] − y

(t)
[k])
>A>(x(t) − x̂

(t)
k ) +

1

n
(ŷ(t) − y(t))>A>x(t) +

1

n

n∑
i=1

(
φ∗i (y

(t)
i )− φ∗i (ŷi)

)
+

(
K

σn
+
γ

n
− 1

2σnK

)
(y? − y(t))>(ŷ(t) − y(t)) +

K

σn
(y(t−1) − y(t))>(ŷ(t) − y(t))

based on the assumption, then we could get that

Λ ≤ M

n
‖ŷ(t) − y(t)‖2 +

K∑
k=1

(
f(x̂

(t)
k , ŷ

(t)
[k])− f(x̂

(t)
k ,y

(t)
[k])
)

where M = 4
√
nRΩx +

(
3K
σ + γ

)
Ωy = c′Ωx + c′′Ωy as defined in Assumption 5. Based on the assumption

E[Λ] ≤ Θ̂
M

n
‖y(t−1) − ŷ(t)‖2 + Θ̃

K∑
k=1

(
f(x̂

(t)
k , ŷ

(t)
[k])− f(x̂

(t)
k ,y

(t−1)
[k] )

)
where Θ̂ < 1, Θ̃ < 1 are defined in Assumption 4, and define the parameter Θ as

Θ = max

{
1

1 +
(
σγ
K −

1
2K2

) , 1

1 + τλ

}
(12)

based on Assumption 5, and we could get that

E[N] = E[
M

n
‖ŷ(t) − y(t)‖2 +

K∑
k=1

(
f(x̂

(t)
k , ŷ

(t)
[k])− f(x̂

(t)
k ,y

(t)
[k])
)

] ≤ Θ
(
f(x(t−1),y?)− f(x?,y(t−1))

)
Then we could get our finial conclusion

E[∆(t)] ≤ ΘE[∆(t−1)]

where we require that

σ >
1

2Kγ
, τσ =

1

4R2
(13)



B.2 Proof of Theorem 1

Proof. By Lemma 1, for each t > 0, we have E[∆(t)] ≤ ΘtE[∆(0)], according to the definition of C, we have

E[‖x(t) − x?‖22] ≤ ΘtC (14)

In order to obtain ΘTC ≤ ε, which needs

T ≥ − log (C/ε)

log (Θ)

Suppose the parameters τ , σ are set as

σ =
1

γ
, τ =

γ

4R2

Then according to the definition of Θ

Θ = max

{
1

1 +
(
σγ
K −

1
2K2

) , 1

1 + τλ

}
= max

{
1

1 +
(

1
K −

1
2K2

) , 1

1 + (λγ)/(4R2)

}

As long as 1
K −

1
2K2 ≥ 1

K −
1

2K = 1
2K ≥

λγ
4R2 , since we assume K ≤ κ. Then we have

Θ =
1

1 + (λγ)/(4R2)
= 1− 1

1 + (4R2)/(λγ)

Thus we can get

T ≥ − log (C/ε)

log (Θ)
=

log (C/ε)

− log
(

1− 1
1+(4R2)/(λγ)

)
where we apply the inequality log(1− x) ≤ −x in the last inequality and we could get the conclusion.

B.3 Convergence guarantee of primal-dual gap

Next we derive the convergence rate of primal-dual gap based on Theorem 1.
Lemma 4 (Yu et al. (2015)). Suppose Assumption 1,2 holds, Let (x?,y?) is the unique saddle-point of f(x,y), and
R = max1≤i≤n ‖ai‖2. Then for any point (x,y) ∈ dom(g)× dom(φ∗), we have

P(x) ≤ f(x,y?) +
R2

2γ
‖x− x?‖22, D(y) ≥ f(x?,y)− R2

2λn
‖y − y?‖22 (15)

Corollary 2. Suppose Assumption A holds and the parameters τ, σ,Θ are set as in (12), (13). Then the iterates of
Algorithm 1 satisfy

E[P(x(T ))−D(y(T ))] ≤ ε
it suffices to have the number of communication iterations T satisfy,

T ≥
(

1 +
4R2

λγ

)
log

((
1 +

R2

λγ

)
C

ε

)
.

Proof. Based on Lemma 4, we have

P(x(t))−D(y(t)) =P(x(t))− P(x?) +D(y?)−D(y(t))

≤ f(x(t),y?) +
R2

2γ
‖x(t) − x?‖22 − f(x?,y(t)) +

R2

2λn
‖y(t) − y?‖22

≤
(

1 +
R2

λγ

)
∆(t)

Similar to Theorem 1, we could get the conclusion.



B.4 Proof of Theorem 2

Proof. If the parameters τ , σ in Algorithm 2 are set as

τ =
γ

4R2
, σ =

1

γ

then based on Lemma 1, we have

Θ = max

{
1

1 + (σγK −
1

2K2 )
,

1

1 + τλ

}
= max

{
1

1 + ( 1
K −

1
2K2 )

,
1

1 + λγ
4R2

}

assume that K ≥ 2, and ( 1
K −

1
2K2 ) ≥ λγ

4R2 , which means we focus on the situation that κ = R2

λγ � 1. Then we could
get that

Θ =
1

1 + λγ
4R2

= 1− 1

1 + 4R2

λγ

Based on Corollary 2, we could get that

P(x(t))− P(x?) ≤ P(x(t))−D(y(t)) ≤
(

1 +
R2

λγ

)
∆(t) ≤ C ′Θt

(
P(x(0))− P(x?)

)
where C ′ is a constant and C ′ > 0 and P(·) is defined in (1). If we apply DiSPA on f (t) defined in Section 5.1, then
based on Proposition 3.2 of Lin et al. (2015), the τM defined in Proposition 3.2 equals

τM =
1

1 + 4R2

(λ+ϑ)γ

where ϑ is the parameter defined in Section 5.1. We could get that τM ≈ (λ+ϑ)γ
4R2 since κ� 1. Now apply Proposition

3.2 in Lin et al. (2015), we could get the global linear rate of convergence withe parameter τA,F ,

τA,F = Õ
(
τM
√
λ/
√
λ+ ϑ

)
= Õ

(
(λ+ ϑ) γ

√
λ

4R2
√
λ+ ϑ

)

if we take ϑ as ϑ = 4R2

γ − λ, then we can get that the communication complexity of the A-DiSPA for achieving
P(x(T ))− P(x?) < ε is Õ

(√
κlog

(
1
ε

))
.
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